Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Methyl 2-\{[3-(3-methoxyphenyl)-1,2,4-oxa-diazol-5-yl]methoxy\}phenylacetate

## Hai-Bo Wang,* Zhi-Qian Liu and Xiao-Chen Yan

Department of Applied Chemistry, College of Science, Nanjing University of Technolgy,
Xinmofan Road No. 5 Nanjing, Nanjing 210009,
People's Republic of China
Correspondence e-mail:
wanghaibo@njut.edu.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
$R$ factor $=0.064$
$w R$ factor $=0.170$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$, was synthesized by the reaction of methyl (2-hydroxyphenyl)acetate and 5-chloro-methyl-3-(3-methoxyphenyl)-1,2,4-oxadiazole. The plane of the oxadiazole ring forms a small dihedral angle of $15.2(2)^{\circ}$ with the plane of the benzene ring directly bonded to it, whereas the second benzene ring is approximately orthogonal to the oxadiazole plane, the dihedral angle being $79.1(2)^{\circ}$.

## Comment

1,2,4-Oxadiazole derivatives are of great interest because of their biological properties. Some derivatives of 1,2,4oxadiazoles have intrinsic analgesic (Terashita et al., 2002), anti-inflammatory (Nicolaides et al., 1998) and antipicornaviral (Romero, 2001) properties, and show high efficacy as agonists or antagonists for different receptors [e.g. agonists for muscarinic (Macor et al., 1996), adrenergic (Quagliato \& Andrae, 2002), 5-hydroxytryptamine (Gur et al., 2001) and antagonists for angiotensin (Naka \& Kubo, 1999) and adhesion (Juraszyk et al., 1997) receptors]. We are focusing our synthetic and structural studies on 1,2,4-oxadiazole derivatives and recently published the structure of methyl \{2-[(3-phenyl-1,2,4-oxadiazol-5-yl)methoxy]phenyl\}acetate (Wang et al., 2004). In the present paper, we report the structure of its close analogue, (I), which has a $p$-methoxyphenyl group instead of an unsubstituted phenyl substituent.


The plane of the oxadiazole ring in (I) (Fig. 1) forms a small dihedral angle of $15.2(2)^{\circ}$ with the plane of the benzene ring (C2-C7) directly bonded to it. The plane of the second benzene ring ( $\mathrm{C} 11-\mathrm{C} 16$ ) is almost orthogonal to the oxadiaole plane, forming a dihedral angle of $79.1(2)^{\circ}$.

## Experimental

Methyl (2-hydroxyphenyl)acetate ( 20 mmol ) was dissolved in acetone $(20 \mathrm{ml})$. Potassium carbonate $(30 \mathrm{mmol})$ was then added to this solution in one portion. 5-Chloromethyl-3-(3-methoxyphenyl)-1,2,4-oxadiazole ( 20 mmol ) in acetone ( 20 ml ) was added to the mixture which was then refluxed for 6 h and finally concentrated under reduced pressure to afford crude compound (I). Pure

Received 15 February 2006
Accepted 17 March 2006
compound (I) was obtained by recrystallization from ethyl acetate. Crystals of (I) suitable for X-ray diffraction studies were obtained by slow evaporation of an ethanol solution.

## Crystal data

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=354.35$
Monoclinic, $P 2_{1} / n$
$a=8.9620$ (18) Å
$b=7.9500(16) \AA$
$c=25.021$ (5) $\AA$
$\beta=96.51$ (3) ${ }^{\circ}$
$V=1771.2(6) \AA^{3}$
$Z=4$

## Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: $\psi$ scan
(North et al., 1968)
$T_{\text {min }}=0.962, T_{\text {max }}=0.990$
3695 measured reflections
3465 independent reflections
1935 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.170$
$S=1.03$
3465 reflections
236 parameters
H -atom parameters constrained
$D_{x}=1.329 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K $\alpha$ radiation
Cell parameters from 25
reflections
$\theta=9-12^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colourless
$0.40 \times 0.10 \times 0.10 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.048 \\
& \theta_{\max }=26.0^{\circ} \\
& h=0 \rightarrow 11 \\
& k=0 \rightarrow 9 \\
& l=-30 \rightarrow 30 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.07 P)^{2}\right. \\
& \quad+0.02 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0095 (17)

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

| O1-C1 | $1.416(5)$ | $\mathrm{O} 4-\mathrm{C} 18$ | $1.330(4)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O} 1-\mathrm{C} 2$ | $1.357(4)$ | $\mathrm{O} 4-\mathrm{C} 19$ | $1.459(4)$ |
| $\mathrm{O} 2-\mathrm{N} 2$ | $1.428(3)$ | $\mathrm{O} 5-\mathrm{C} 18$ | $1.188(3)$ |
| $\mathrm{O} 2-\mathrm{C} 9$ | $1.322(3)$ | $\mathrm{N} 1-\mathrm{C} 8$ | $1.382(4)$ |
| $\mathrm{O} 3-\mathrm{C} 10$ | $1.413(3)$ | $\mathrm{N} 1-\mathrm{C} 9$ | $1.290(4)$ |
| $\mathrm{O} 3-\mathrm{C} 11$ | $1.388(3)$ | $\mathrm{N} 2-\mathrm{C} 8$ | $1.297(4)$ |
|  |  |  |  |
| $\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 1$ | $118.5(3)$ | $\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 4$ | $123.3(3)$ |
| $\mathrm{C} 9-\mathrm{O} 2-\mathrm{N} 2$ | $106.3(2)$ | $\mathrm{N} 1-\mathrm{C} 9-\mathrm{O} 2$ | $114.0(3)$ |
| $\mathrm{C} 11-\mathrm{O} 3-\mathrm{C} 10$ | $118.5(2)$ | $\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$ | $130.3(3)$ |
| $\mathrm{C} 18-\mathrm{O} 4-\mathrm{C} 19$ | $115.1(3)$ | $\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10$ | $115.7(3)$ |
| $\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 8$ | $102.3(2)$ | $\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 9$ | $112.3(2)$ |
| $\mathrm{C} 8-\mathrm{N} 2-\mathrm{O} 2$ | $102.5(2)$ | $\mathrm{O} 5-\mathrm{C} 18-\mathrm{O} 4$ | $124.4(3)$ |
| N2-C8-N1 | $114.8(3)$ | $\mathrm{O} 5-\mathrm{C} 18-\mathrm{C} 17$ | $124.5(3)$ |
| N2-C8-C4 | $121.9(3)$ | $\mathrm{O} 4-\mathrm{C} 18-\mathrm{C} 17$ | $111.0(3)$ |



Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the $30 \%$ probability level.

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$. They were refined in the riding-model approximation, with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97.

## References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gur, E., Dremencov, E., Lerer, B. \& Newman, M. E. (2001). Eur. J. Pharmacol. 411, 115-122.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Juraszyk, H., Gante, J., Wurziger, H., Bernotat-Danielowski, S. \& Melzer, G. (1997). PCT Int. Appl. No. 9744333.

Macor, J. E., Ordway, T., Smith, R. L., Verhoest, P. R. \& Mack, R. A. (1996). J. Org. Chem. 61, 3228-3229.
Naka, T. \& Kubo, K. (1999). Curr. Pharm. Des. 5, 453-472.
Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. \& Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715-724.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Quagliato, D. A. \& Andrae, P. M. (2002). PCT Int. Appl. WO 0206250.
Romero, J. R. (2001). Expert Opin. Invest. Drugs, 10, 369-379.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Terashita, Z., Naruo, K. \& Morimoto, S. (2002). PCT Int. Appl. WO, 02060439.
Wang, H.-B., Chen, J.-H. \& Wang, J.-T. (2004). Acta Cryst. E60, o1478-o1480.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

